login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280473
G.f.: Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k)).
11
1, 1, 3, 6, 12, 21, 43, 70, 127, 215, 364, 591, 989, 1562, 2515, 3954, 6194, 9538, 14754, 22349, 33926, 50910, 76102, 112721, 166747, 244205, 356984, 518344, 749924, 1078711, 1547668, 2207418, 3140135, 4446572, 6276657, 8823776, 12371487, 17275879, 24061878
OFFSET
0,3
LINKS
Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
FORMULA
G.f.: Product_{k>=1} (1 + x^k)^tau_3(k), where tau_3() = A007425. - Ilya Gutkovskiy, May 22 2018
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^(i*j*k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x]
nmax = 50; A007425 = Table[Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 + x; Do[s *= Sum[Binomial[A007425[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 30 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 04 2017
STATUS
approved