OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0.
(ii) lim_n a(n)/(log n)^2 = 1/Pi^2.
On the author's request, Prof. Qing-Hu Hou at Tianjin Univ. has verified part (i) of the above conjecture for n up to 10^9.
See also A280455 for a similar conjecture of the author involving the partition function.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28--Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
EXAMPLE
MATHEMATICA
Oct[n_]:=Oct[n]=IntegerQ[Sqrt[3n+1]]&&Mod[Sqrt[3n+1], 3]==1;
q[n_]:=q[n]=PartitionsQ[n];
Do[r=0; m=2; Label[bb]; If[q[m]>n, Goto[cc]]; Do[If[Oct[n-q[m]-x(3x-2)], r=r+1], {x, 0, (Sqrt[3(n-q[m])+1]+1)/3}]; m=m+If[m<3, 2, 1]; Goto[bb]; Label[cc]; Print[n, " ", r]; Continue, {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 04 2017
STATUS
approved