login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s)).
1

%I #16 Dec 02 2020 03:15:12

%S 1,3,4,6,4,12,4,10,10,12,4,24,4,12,16,15,4,30,4,24,16,12,4,40,10,12,

%T 20,24,4,48,4,21,16,12,16,60,4,12,16,40,4,48,4,24,40,12,4,60,10,30,16,

%U 24,4,60,16,40,16,12,4,96,4,12,40,28,16,48,4,24,16,48,4,100,4,12,40

%N Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s)).

%C Inverse Moebius transform applied twice to A001227.

%H Amiram Eldar, <a href="/A326417/b326417.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=1} tau_3(k) * x^k / (1 - x^(2*k)), where tau_3 = A007425.

%F a(n) = tau_4(n) if n odd, tau_4(n) - tau_4(n/2) if n even, where tau_4 = A007426.

%F a(n) = Sum_{d|n, n/d odd} tau_3(d).

%F a(n) = Sum_{d|n} A000005(n/d) * A001227(d).

%F Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A280486.

%F Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = (e+1)*(e+2)*(e+3)/6 for odd primes p. - _Amiram Eldar_, Dec 02 2020

%t Table[Sum[DivisorSigma[0, n/d] Total[Mod[Divisors[d], 2]], {d, Divisors[n]}], {n, 1, 75}]

%t nmax = 75; A007425 = Table[DivisorSum[n, DivisorSigma[0, #] &], {n, 1, nmax}]; Table[DivisorSum[n, A007425[[#]] &, OddQ[n/#] &], {n, 1, nmax}]

%t f[2, e_] := (e + 1)*(e + 2)/2; f[p_, e_] := (e + 1)*(e + 2)*(e + 3)/6; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Dec 02 2020 *)

%Y Cf. A000005, A001227, A007425, A007426, A133700, A280486, A318845.

%K nonn,mult

%O 1,2

%A _Ilya Gutkovskiy_, Oct 18 2019