OFFSET
1,3
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2), which are distinct, so (1,2,1,3) is counted under a(7).
LINKS
EXAMPLE
The a(1) = 1 through a(7) = 26 compositions:
(1) (2) (3) (4) (5) (6) (7)
(12) (13) (14) (15) (16)
(21) (31) (23) (24) (25)
(112) (32) (42) (34)
(121) (41) (51) (43)
(211) (113) (114) (52)
(122) (141) (61)
(131) (411) (115)
(212) (124)
(221) (133)
(311) (142)
(151)
(214)
(223)
(232)
(241)
(313)
(322)
(331)
(412)
(421)
(511)
(1213)
(1312)
(2131)
(3121)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@Differences[Append[#, First[#]]]&]], {n, 15}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, May 10 2019
STATUS
approved