Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Apr 22 2019 13:50:41
%S 12,52,72,148,132,216,172,192,84,292,252,292,412,476,352,520,432,640,
%T 592,472,492,672,532,552,748,412,672,976,732,576,772,1132,1048,1128,
%U 852,1284,892,952,972,1324,1460,1356,1624,1720,1132,1152,1192,-36,1660,1272,1068,1332,1812,1372,1888,1392,2116,1452,1972,2040,1552,2116
%N a(n) = A033879(A228058(n)).
%C The negative terms -36, -1692, -2388, -34944, -16596, -38628, -512, ..., occur at n = 48, 378, 1744, 2255, 2745, 2870, 3555, ..., where A228058(n) is 2205, 19845, 108045, 143325, 178605, 187425, 236925, ..., one of the odd abundant numbers, A005231.
%H Antti Karttunen, <a href="/A325379/b325379.txt">Table of n, a(n) for n = 1..25000</a>
%F a(n) = A033879(A228058(n)).
%F a(n) = A325319(n) - A325320(n).
%F A001511(abs(a(n))) = A325310(A228058(n)), assuming there are no odd perfect numbers, in which case A001511(abs(a(n))) >= 3 for all n. That is, all terms are multiples of 4.
%o (PARI)
%o A033879(n) = (n+n-sigma(n));
%o isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
%o k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(A033879(n), ", ")));
%Y Cf. A005231, A033879, A228058, A228059, A325310, A325319, A325320, A325378.
%K sign
%O 1,1
%A _Antti Karttunen_, Apr 22 2019