OFFSET
1,1
COMMENTS
The enumeration of these partitions by sum is given by A325182.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
5: {3}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
20: {1,1,3}
21: {2,4}
35: {3,4}
36: {1,1,2,2}
42: {1,2,4}
49: {4,4}
54: {1,2,2,2}
60: {1,1,2,3}
63: {2,2,4}
70: {1,3,4}
81: {2,2,2,2}
84: {1,1,2,4}
90: {1,2,2,3}
98: {1,4,4}
100: {1,1,3,3}
105: {2,3,4}
MATHEMATICA
durf[n_]:=Length[Select[Range[PrimeOmega[n]], Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]][[#]]>=#&]];
codurf[n_]:=If[n==1, 0, Max[PrimeOmega[n], PrimePi[FactorInteger[n][[-1, 1]]]]];
Select[Range[1000], codurf[#]-durf[#]==2&]
CROSSREFS
Positions of 2's in A325178.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 08 2019
STATUS
approved