login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325168
Number of integer partitions of n with origin-to-boundary graph-distance equal to 2.
7
0, 0, 0, 1, 3, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 104, 105, 108, 109, 112, 113, 116, 117, 120, 121
OFFSET
0,5
COMMENTS
The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps left or down from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the maximum triangular partition contained inside it.
FORMULA
From Colin Barker, Apr 08 2019: (Start)
G.f.: x^3*(1 + 2*x + x^2 + x^3 - x^4) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>7.
a(n) = 2*n - 4 for n>4 and even.
a(n) = 2*n - 5 for n>4 and odd.
(End)
EXAMPLE
The a(3) = 1 through a(10) = 16 partitions:
(21) (22) (32) (33) (43) (44) (54) (55)
(31) (41) (42) (52) (53) (63) (64)
(211) (221) (51) (61) (62) (72) (73)
(311) (222) (511) (71) (81) (82)
(2111) (411) (2221) (611) (711) (91)
(2211) (4111) (2222) (6111) (811)
(3111) (22111) (5111) (22221) (7111)
(21111) (31111) (22211) (51111) (22222)
(211111) (41111) (222111) (61111)
(221111) (411111) (222211)
(311111) (2211111) (511111)
(2111111) (3111111) (2221111)
(21111111) (4111111)
(22111111)
(31111111)
(211111111)
MATHEMATICA
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&, Append[ptn, 0]];
Table[Length[Select[IntegerPartitions[n], otb[#]==2&]], {n, 0, 30}]
PROG
(PARI) concat([0, 0, 0], Vec(x^3*(1 + 2*x + x^2 + x^3 - x^4) / ((1 - x)^2*(1 + x)) + O(x^80))) \\ Colin Barker, Apr 08 2019
KEYWORD
nonn,easy
AUTHOR
Gus Wiseman, Apr 05 2019
STATUS
approved