OFFSET
0,5
COMMENTS
The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps left or down from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the maximum triangular partition contained inside it.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
From Colin Barker, Apr 08 2019: (Start)
G.f.: x^3*(1 + 2*x + x^2 + x^3 - x^4) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>7.
a(n) = 2*n - 4 for n>4 and even.
a(n) = 2*n - 5 for n>4 and odd.
(End)
EXAMPLE
The a(3) = 1 through a(10) = 16 partitions:
(21) (22) (32) (33) (43) (44) (54) (55)
(31) (41) (42) (52) (53) (63) (64)
(211) (221) (51) (61) (62) (72) (73)
(311) (222) (511) (71) (81) (82)
(2111) (411) (2221) (611) (711) (91)
(2211) (4111) (2222) (6111) (811)
(3111) (22111) (5111) (22221) (7111)
(21111) (31111) (22211) (51111) (22222)
(211111) (41111) (222111) (61111)
(221111) (411111) (222211)
(311111) (2211111) (511111)
(2111111) (3111111) (2221111)
(21111111) (4111111)
(22111111)
(31111111)
(211111111)
MATHEMATICA
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&, Append[ptn, 0]];
Table[Length[Select[IntegerPartitions[n], otb[#]==2&]], {n, 0, 30}]
PROG
(PARI) concat([0, 0, 0], Vec(x^3*(1 + 2*x + x^2 + x^3 - x^4) / ((1 - x)^2*(1 + x)) + O(x^80))) \\ Colin Barker, Apr 08 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gus Wiseman, Apr 05 2019
STATUS
approved