login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325123
Number of divisible pairs of positive integers up to n with no binary carries.
7
0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 9, 9, 12, 12, 13, 13, 17, 17, 19, 19, 22, 22, 23, 23, 28, 28, 29, 29, 31, 31, 32, 32, 37, 37, 39, 39, 44, 44, 45, 45, 50, 50, 52, 52, 54, 54, 55, 55, 62, 62, 64, 64, 66, 66, 68, 68, 72, 72, 73, 73, 76, 76, 77, 77, 83, 83, 85, 85
OFFSET
0,5
COMMENTS
Two positive integers are divisible if the first divides the second, and they have a binary carry if the positions of 1's in their reversed binary expansion overlap.
a(2k+1) = a(2k), since an odd number and any divisor will overlap in the last digit. Additionally, a(2k+2) > a(2k+1) because the pair {1,2k+2} is always valid. Therefore, every term appears exactly twice. - Charlie Neder, Apr 02 2019
EXAMPLE
The a(2) = 1 through a(11) = 9 pairs:
{1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2}
{1,4} {1,4} {1,4} {1,4} {1,4} {1,4} {1,4} {1,4}
{2,4} {2,4} {1,6} {1,6} {1,6} {1,6} {1,6} {1,6}
{2,4} {2,4} {1,8} {1,8} {1,8} {1,8}
{2,4} {2,4} {2,4} {2,4}
{2,8} {2,8} {2,8} {2,8}
{4,8} {4,8} {4,8} {4,8}
{1,10} {1,10}
{5,10} {5,10}
MATHEMATICA
Table[Length[Select[Tuples[Range[n], 2], Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]], 2]], 1], Position[Reverse[IntegerDigits[#[[2]], 2]], 1]]=={}&]], {n, 0, 20}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 29 2019
STATUS
approved