login
A324869
a(n) is the number of times A324862(d) attains the maximal value it obtains among the divisors d of n.
2
1, 2, 2, 1, 2, 1, 2, 1, 1, 4, 2, 3, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 3, 3, 1, 1, 3, 2, 2, 2, 2, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 3, 2, 1, 2, 2, 3, 6, 1, 3, 2, 2, 1, 3, 1, 1, 2, 2, 2, 1, 2, 1, 4, 3, 2, 3, 4, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 3, 4, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 3, 1
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} [A324862(d) = A324864(n)], where [ ] is the Iverson bracket.
a(p) = 2 for all primes p.
EXAMPLE
Divisors of 9 are [1, 3, 4]. A324862 applied to these gives values [0, 0, 3], of which the largest (3) occurs just once, thus a(9) = 1.
Divisors of 10 are [1, 2, 5, 10]. A324862 applied to these gives values [0, 0, 0, 0], of which the largest (0) occurs just four times, thus a(10) = 4.
Divisors of 88 are [1, 2, 4, 8, 11, 22, 44, 88]. A324862 applied to these gives values [0, 0, 1, 0, 0, 1, 1, 0], of which the largest (which is 1) occurs three times, thus a(88) = 3.
PROG
(PARI) A324869(n) = { my(m=0, w, c=0); fordiv(n, d, w=A324862(d); if(w>=m, if(w==m, c++, c=1; m=w))); (c); };
CROSSREFS
Sequence in context: A193238 A323826 A275824 * A167678 A078614 A026607
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 21 2019
STATUS
approved