

A324864


a(n) is the maximal value that A324862(d) attains among the divisors d of n.


5



0, 0, 0, 1, 0, 1, 0, 1, 3, 0, 0, 1, 0, 1, 4, 4, 0, 3, 0, 1, 5, 1, 0, 1, 0, 1, 4, 1, 0, 4, 0, 4, 0, 1, 5, 4, 0, 1, 7, 1, 0, 5, 0, 1, 4, 1, 0, 4, 0, 0, 2, 1, 0, 4, 6, 1, 9, 1, 0, 4, 0, 1, 5, 6, 0, 1, 0, 1, 0, 5, 0, 5, 0, 1, 5, 1, 6, 7, 0, 4, 4, 1, 0, 5, 8, 1, 11, 1, 0, 6, 7, 1, 0, 1, 9, 5, 0, 1, 7, 5, 0, 2, 0, 1, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,9


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
Index entries for sequences related to binary expansion of n
Index entries for sequences computed from indices in prime factorization
Index entries for sequences related to sigma(n)


FORMULA

a(n) = Max_{dn} A324862(d).
a(p) = 0 for all primes p.


EXAMPLE

Divisors of 8 are [1, 2, 4, 8]. A324862 applied to these gives values [0, 0, 1, 0], of which the largest is 1, thus a(8) = 1.
Divisors of 81 are [1, 3, 9, 27, 81]. A324862 applied to these gives values [0, 0, 3, 4, 0], of which 4 is the largest, thus a(81) = 4.
Divisors of 88 are [1, 2, 4, 8, 11, 22, 44, 88]. A324862 applied to these gives values [0, 0, 1, 0, 0, 1, 1, 0], of which the largest is 1, thus a(88) = 1.


PROG

(PARI) A324864(n) = { my(m=0, w, c=0); fordiv(n, d, w=A324862(d); if(w>=m, if(w==m, c++, c=1; m=w))); (m); };


CROSSREFS

Cf. A324862, A324863, A324869 (gives the count of how many times the largest value occurs).
Sequence in context: A104515 A324874 A324862 * A171913 A074936 A035655
Adjacent sequences: A324861 A324862 A324863 * A324865 A324866 A324867


KEYWORD

nonn


AUTHOR

Antti Karttunen, Mar 21 2019


STATUS

approved



