login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324723
Numbers n such that bitor(2*k, sigma(k)) == 2k, where k = A156552(n).
2
4, 8, 9, 16, 27, 30, 32, 45, 64, 72, 125, 128, 135, 144, 243, 250, 256, 270, 315, 405, 420, 480, 490, 512, 576, 600, 675, 756, 810, 825, 875, 988, 1000, 1024, 1152, 1155, 1210, 1215, 1458, 1470, 1600, 1690, 1716, 1728, 1920, 2048, 2100, 2187, 2250, 2430, 2450, 2475, 3125, 3234, 3240, 3600, 3645, 3825, 4320, 4375, 5070, 5103
OFFSET
1,1
PROG
(PARI)
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth
isA324726(n) = ((2*n)==bitor(2*n, sigma(n)));
isA324723(n) = if(n>1, isA324726(A156552(n)));
(PARI) isA324723(n) = if(1==n, 0, my(t=2*A156552(n)); (t==bitor(t, A323243(n)))); \\ Using also code from A323243.
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 15 2019
STATUS
approved