login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272758
Perfect powers whose binary reversal is also a perfect power.
1
1, 4, 8, 9, 16, 27, 32, 36, 64, 128, 144, 216, 256, 512, 576, 1024, 1728, 2048, 2304, 4096, 8192, 9216, 13824, 16384, 32768, 36864, 65536, 110592, 131072, 147456, 262144, 524288, 589824, 884736, 1048576, 2097152, 2359296, 4194304, 7077888, 8388608, 9437184, 16777216
OFFSET
1,2
COMMENTS
All powers of 2 (A000079) are terms. - Michel Marcus, May 06 2016
LINKS
EXAMPLE
The binary expansion of 16=2^4 is 10000, its reversal is 1, a square, so 16 is a term.
MATHEMATICA
fQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Select[Range[2^20], fQ], fQ@ FromDigits[Reverse@ IntegerDigits[#, 2], 2] &] (* Michael De Vlieger, May 05 2016, after Ant King and Robert G. Wilson v at A001597 *)
PROG
(PARI) isp(n) = (n==1) || ispower(n);
isok(n) = isp(n) && isp(subst(Polrev(binary(n)), x, 2)); \\ Michel Marcus, May 06 2016
CROSSREFS
Cf. A000079, A001597, A030101, A118895 (base-10 analog).
Sequence in context: A348995 A324723 A355580 * A227645 A375160 A285438
KEYWORD
nonn,base
AUTHOR
Benjamin Przybocki, May 05 2016
STATUS
approved