login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324363
a(n) = numerator of Sum_{d|n} sigma(d)/pod(d) where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).
1
1, 5, 7, 27, 11, 25, 15, 231, 76, 97, 23, 2185, 27, 369, 91, 3727, 35, 9049, 39, 19041, 1565, 887, 47, 48775, 306, 615, 2092, 65, 59, 63601, 63, 119327, 1259, 1042, 4143, 55891387, 75, 2595, 5243, 1278633, 83, 713689, 87, 96711, 125216, 3785, 95, 339061279
OFFSET
1,2
COMMENTS
Sum_{d|n} sigma(d)/pod(d) > 1 for all n > 1.
FORMULA
a(p) = 2p+1 for p = primes (A000040).
EXAMPLE
For n=4; Sum_{d|4} sigma(d)/pod(d) = sigma(1)/pod(1) + sigma(2)/pod(2) + sigma(4)/pod(4) = 1/1 + 3/2 + 7/8 = 27/8; a(4) = 27.
MATHEMATICA
Array[Numerator@ DivisorSum[#, Total[#]/(Times @@ #) &@ Divisors@ # &] &, 48] (* Michael De Vlieger, Feb 24 2019 *)
PROG
(Magma) [Numerator(&+[SumOfDivisors(d) / &*[c: c in Divisors(d)]: d in Divisors(n)]): n in [1..100]]
(PARI) a(n) = numerator(sumdiv(n, d, sigma(d)/vecprod(divisors(d)))); \\ Michel Marcus, Feb 23 2019
CROSSREFS
Cf. A000040, A000203, A007955, A324364 (denominators).
Sequence in context: A013626 A067701 A059240 * A166100 A135606 A051845
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Feb 23 2019
STATUS
approved