login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324290
a(n) = 1 if for every prime divisor p of n, p-1 divides n-1, 0 otherwise; characteristic function of A087441.
4
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
COMMENTS
Function c1(n) = A008966(n)*a(n) is the characteristic function of A324050.
Function c2(n) = A008966(n)*a(n) - A080339(n) is the characteristic function of Carmichael numbers, A002997.
Function c3(n) = a(n) - A010055(n) is the characteristic function of A087442.
FORMULA
a(n) >= A010055(n) >= A010051(n) for all n.
PROG
(PARI) A324290(n) = if(1==n, 1, my(f=factor(n)); for(i=1, #f[, 1], if((n-1)%(f[i, 1]-1), return(0))); (1));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 22 2019
STATUS
approved