login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sequence lists numbers k > 1 such that k^3 == phi(k) (mod sigma(k)), where phi = A000010 and sigma = A000203.
2

%I #6 Feb 20 2019 15:10:44

%S 5472,10120,22140,66288,84788,97320,125400,152928,244736,245232,

%T 364782,769248,839970,910336,1358046,1390872,1472748,1593036,4716640,

%U 7672032,11178612,17984160,31121640,31535120,31963680,32749752,34889400,43949640,45123880,46978020

%N Sequence lists numbers k > 1 such that k^3 == phi(k) (mod sigma(k)), where phi = A000010 and sigma = A000203.

%F Solutions of k^3 mod sigma(k) = phi(k).

%e sigma(5472) = 16380 and 5472^3 mod 16380 = 1728 = phi(5472).

%p with(numtheory): op(select(n->n^3 mod sigma(n)=phi(n), [$1..1593036]));

%Y Cf. A000010, A000203, A324214, A324216.

%K nonn,easy

%O 1,1

%A _Paolo P. Lava_, Feb 18 2019

%E a(20)-a(30) from _Giovanni Resta_, Feb 19 2019