

A324215


Sequence lists numbers k > 1 such that k^3 == phi(k) (mod sigma(k)), where phi = A000010 and sigma = A000203.


2



5472, 10120, 22140, 66288, 84788, 97320, 125400, 152928, 244736, 245232, 364782, 769248, 839970, 910336, 1358046, 1390872, 1472748, 1593036, 4716640, 7672032, 11178612, 17984160, 31121640, 31535120, 31963680, 32749752, 34889400, 43949640, 45123880, 46978020
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



FORMULA

Solutions of k^3 mod sigma(k) = phi(k).


EXAMPLE

sigma(5472) = 16380 and 5472^3 mod 16380 = 1728 = phi(5472).


MAPLE

with(numtheory): op(select(n>n^3 mod sigma(n)=phi(n), [$1..1593036]));


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



EXTENSIONS



STATUS

approved



