|
|
A323875
|
|
Number of labeled graphs on n nodes with two connected components.
|
|
3
|
|
|
0, 1, 3, 19, 230, 5098, 207536, 15891372, 2343580752, 675458276144, 383306076989440, 430041136692146912, 956431386434331323776, 4224539434553753578497024, 37106501188130085159785113344, 648740172906485727983524271405824, 22591360806791558877526051411343415296, 1567817808096346724727108606144936617617408
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
REFERENCES
|
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, section 1.2.
|
|
LINKS
|
Table of n, a(n) for n=1..18.
Marko Riedel et al., Proof of recurrence relation.
Marko Riedel, Maple implementation of memoized recurrence.
|
|
FORMULA
|
a(n) = A143543(n, 2).
E.g.f.: log(Sum_{q>=0} 2^binomial(q, 2)*z^q/q!)^2/2!.
|
|
CROSSREFS
|
Cf. A143543, A323876, A323877.
Sequence in context: A198046 A295812 A228229 * A001929 A349962 A230316
Adjacent sequences: A323872 A323873 A323874 * A323876 A323877 A323878
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Marko Riedel, Feb 05 2019
|
|
STATUS
|
approved
|
|
|
|