Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 26 2019 05:02:48
%S 0,1,3,19,230,5098,207536,15891372,2343580752,675458276144,
%T 383306076989440,430041136692146912,956431386434331323776,
%U 4224539434553753578497024,37106501188130085159785113344,648740172906485727983524271405824,22591360806791558877526051411343415296,1567817808096346724727108606144936617617408
%N Number of labeled graphs on n nodes with two connected components.
%D F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, section 1.2.
%H Marko Riedel et al., <a href="https://math.stackexchange.com/questions/3094635/">Proof of recurrence relation.</a>
%H Marko Riedel, <a href="/A323875/a323875.maple.txt">Maple implementation of memoized recurrence.</a>
%F a(n) = A143543(n, 2).
%F E.g.f.: log(Sum_{q>=0} 2^binomial(q, 2)*z^q/q!)^2/2!.
%Y Cf. A143543, A323876, A323877.
%K nonn
%O 1,3
%A _Marko Riedel_, Feb 05 2019