login
A323728
a(n) is the smallest number k such that both k-2*n and k+2*n are squares.
1
2, 5, 10, 8, 26, 13, 50, 20, 18, 29, 122, 25, 170, 53, 34, 32, 290, 45, 362, 41, 58, 125, 530, 52, 50, 173, 90, 65, 842, 61, 962, 80, 130, 293, 74, 72, 1370, 365, 178, 89, 1682, 85, 1850, 137, 106, 533, 2210, 100, 98, 125, 298, 185, 2810, 117, 146, 113, 370
OFFSET
1,1
COMMENTS
When n is a prime number, a(n) is greater than all the previous terms.
If n = 4*x*y, then a(n) is the smallest integer solution of the form 4*(x^2 + y^2), with rational values x and y.
FORMULA
a(n^2) = 2 * n^2.
a(p) = p^2 + 1, for p prime.
a(n) = A063655(n)^2 - 2*n.
a(n) = A056737(n)^2 + 2*n.
a(n!) = A061057(n)^2 + 2*n!.
a(n) = A033676(n)^2 + A033677(n)^2. - Robert Israel, Feb 17 2019
a(n) = Min_{d|n} ((n/d)^2 + d^2). - Ridouane Oudra, Mar 17 2024
EXAMPLE
For n = 3, a(3) = 10, which is the smallest integer k such that k+2*n and k-2*n are both squares: 10+2*3 = 4^2 and 10-2*3 = 2^2.
For n=1..10, the following {a(n)-2*n, a(n)+2*n} pairs of squares are produced: {0, 4}, {1, 9}, {4, 16}, {0, 16}, {16, 36}, {1, 25}, {36, 64}, {4, 36}, {0, 36}, {9, 49}.
MAPLE
f:= proc(n) local d;
d:= max(select(t -> t^2 <= n, numtheory:-divisors(n)));
d^2 + (n/d)^2
end proc:
map(f, [$1..100]); # Robert Israel, Feb 17 2019
MATHEMATICA
Array[Block[{k = 1}, While[Nand @@ Map[IntegerQ, Sqrt[k + 2 {-#, #}]], k++]; k] &, 57] (* Michael De Vlieger, Feb 17 2019 *)
PROG
(PARI) a(n) = for(k=2*n, oo, if(issquare(k+2*n) && issquare(k-2*n), return(k)));
(PARI) a(n) = my(d=divisors(n)); vecmin(vector(#d, k, 4*((d[k]/2)^2 + (n/d[k]/2)^2)));
KEYWORD
nonn
AUTHOR
Daniel Suteu, Jan 25 2019
STATUS
approved