login
A056737
Minimum nonnegative integer m such that n = k*(k+m) for some positive integer k.
32
0, 1, 2, 0, 4, 1, 6, 2, 0, 3, 10, 1, 12, 5, 2, 0, 16, 3, 18, 1, 4, 9, 22, 2, 0, 11, 6, 3, 28, 1, 30, 4, 8, 15, 2, 0, 36, 17, 10, 3, 40, 1, 42, 7, 4, 21, 46, 2, 0, 5, 14, 9, 52, 3, 6, 1, 16, 27, 58, 4, 60, 29, 2, 0, 8, 5, 66, 13, 20, 3, 70, 1, 72, 35, 10, 15, 4
OFFSET
1,3
COMMENTS
a(n) is difference between the least divisor of n that is >= square root(n) and the greatest divisor of n that is <= square root(n).
From Omar E. Pol, Aug 12 2009: (Start)
a(n) = 0 iff n is a square.
a(n) = n-1 is a new record iff n is a prime number. (End)
For odd n = 2k-1, a(n) = 2*A219695(k) is even. - M. F. Hasler, Nov 25 2012
FORMULA
a(n) = Min_{t - d | 0 < d <= t <= n and d*t=n}. - Reinhard Zumkeller, Feb 25 2002
a(n) = A033677(n)-A033676(n). - Omar E. Pol, Jun 21 2009
a(2n-1) = 2*A219695(n). - M. F. Hasler, Nov 25 2012
EXAMPLE
a(8) = 2 because 8 = 2*(2+2) and 8 = k*(k+1) or 8 = k^2 have no solutions for k = a positive integer.
MATHEMATICA
A033676[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2]], Sqrt[n]] A033677[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2+1]], Sqrt[n]] Table[A033677[n] - A033676[n], {n, 1, 128}] (Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 27 2004)
Table[d = Divisors[n]; len = Length[d]; If[OddQ[len], 0, d[[1 + len/2]] - d[[len/2]]], {n, 100}] (* T. D. Noe, Jun 04 2012 *)
PROG
(PARI) A056737(n)={n=divisors(n); n[(2+#n)\2]-n[(1+#n)\2]} \\ M. F. Hasler, Nov 25 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 26 2000
STATUS
approved