This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056737 Minimum nonnegative integer m such that n = k*(k+m) for some positive integer k. 24
 0, 1, 2, 0, 4, 1, 6, 2, 0, 3, 10, 1, 12, 5, 2, 0, 16, 3, 18, 1, 4, 9, 22, 2, 0, 11, 6, 3, 28, 1, 30, 4, 8, 15, 2, 0, 36, 17, 10, 3, 40, 1, 42, 7, 4, 21, 46, 2, 0, 5, 14, 9, 52, 3, 6, 1, 16, 27, 58, 4, 60, 29, 2, 0, 8, 5, 66, 13, 20, 3, 70, 1, 72, 35, 10, 15, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) is difference between the least divisor of n that is >= square root(n) and the greatest divisor of n that is <= square root(n). From Omar E. Pol, Aug 12 2009: (Start) a(n) = 0 iff n is a square. a(n) = n-1 is a new record iff n is a prime number. (End) For odd n = 2k-1, a(n) = 2*A219695(k) is even. - M. F. Hasler, Nov 25 2012 LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 FORMULA a(n) = Min{t - d | 0 < d <= t <= n and d*t=n}. - Reinhard Zumkeller, Feb 25 2002 a(n) = A033677(n)-A033676(n). - Omar E. Pol, Jun 21 2009 a(2n-1) = 2*A219695(n). - M. F. Hasler, Nov 25 2012 EXAMPLE a(8) = 2 because 8 = 2*(2+2) and 8 = k*(k+1) or 8 = k^2 have no solutions for k = a positive integer. MATHEMATICA A033676[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2]], Sqrt[n]] A033677[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2+1]], Sqrt[n]] Table[A033677[n] - A033676[n], {n, 1, 128}] (Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 27 2004) Table[d = Divisors[n]; len = Length[d]; If[OddQ[len], 0, d[[1 + len/2]] - d[[len/2]]], {n, 100}] (* T. D. Noe, Jun 04 2012 *) PROG (PARI) A056737(n)={n=divisors(n); n[(2+#n)\2]-n[(1+#n)\2]}  \\ M. F. Hasler, Nov 25 2012 CROSSREFS Cf. A033676, A033677. Cf. A000040, A000290, A147861, A163100, A163280. Sequence in context: A242071 A176910 A243981 * A289144 A008797 A239004 Adjacent sequences:  A056734 A056735 A056736 * A056738 A056739 A056740 KEYWORD nonn AUTHOR Leroy Quet, Aug 26 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 11 18:50 EST 2019. Contains 329031 sequences. (Running on oeis4.)