OFFSET
1,3
COMMENTS
a(n) is difference between the least divisor of n that is >= square root(n) and the greatest divisor of n that is <= square root(n).
From Omar E. Pol, Aug 12 2009: (Start)
a(n) = 0 iff n is a square.
a(n) = n-1 is a new record iff n is a prime number. (End)
For odd n = 2k-1, a(n) = 2*A219695(k) is even. - M. F. Hasler, Nov 25 2012
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = Min_{t - d | 0 < d <= t <= n and d*t=n}. - Reinhard Zumkeller, Feb 25 2002
a(2n-1) = 2*A219695(n). - M. F. Hasler, Nov 25 2012
EXAMPLE
a(8) = 2 because 8 = 2*(2+2) and 8 = k*(k+1) or 8 = k^2 have no solutions for k = a positive integer.
MATHEMATICA
A033676[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2]], Sqrt[n]] A033677[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2+1]], Sqrt[n]] Table[A033677[n] - A033676[n], {n, 1, 128}] (Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 27 2004)
Table[d = Divisors[n]; len = Length[d]; If[OddQ[len], 0, d[[1 + len/2]] - d[[len/2]]], {n, 100}] (* T. D. Noe, Jun 04 2012 *)
PROG
(PARI) A056737(n)={n=divisors(n); n[(2+#n)\2]-n[(1+#n)\2]} \\ M. F. Hasler, Nov 25 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 26 2000
STATUS
approved