The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323553 Irregular table read by rows: T(n,k) = (2*k+1)^(-1/3) mod 2^n, 0 <= k <= 2^(n-1) - 1. 5
 1, 1, 3, 1, 3, 5, 7, 1, 3, 5, 7, 9, 11, 13, 15, 1, 19, 21, 7, 9, 27, 29, 15, 17, 3, 5, 23, 25, 11, 13, 31, 1, 51, 53, 39, 41, 27, 29, 15, 17, 3, 5, 55, 57, 43, 45, 31, 33, 19, 21, 7, 9, 59, 61, 47, 49, 35, 37, 23, 25, 11, 13, 63, 1, 51, 117, 39, 41, 91, 29, 79, 81, 3, 69 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS T(n,k) is the unique x in {1, 3, 5, ..., 2^n - 1} such that x^3*(2*k+1) == 1 (mod 2^n). The n-th row contains 2^(n-1) numbers, and is a permutation of the odd numbers below 2^n. For all n, k we have v(T(n,k)-1, 2) = v(k, 2) + 1 and v(T(n,k)+1, 2) = v(k+1, 2) + 1, where v(k, 2) = A007814(k) is the 2-adic valuation of k. T(n,k) is the multiplicative inverse of A323556(n,k) modulo 2^n. LINKS EXAMPLE Table starts   1; 1, 3; 1, 3, 5, 7; 1, 3, 5, 7, 9,11,13,15; 1,19,21, 7, 9,27,29,15,17, 3, 5,23,25,11,13,31; 1,51,53,39,41,27,29,15,17, 3, 5,55,57,43,45,31,33,19,21, 7, 9,59,61,47,49,35,37,23,25,11,13,63; .. MAPLE A323553 := proc(n, k)     local x;     for x from 1 to 2^n-1 by 2 do         if modp(x^3*(2*k+1), 2^n) = 1 then             return x;         end if;     end do: end proc: seq(seq(A323553(n, k), k=0..2^(n-1)-1), n=1..8) ; # R. J. Mathar, Dec 15 2020 CROSSREFS Cf. A007814. {(2*k+1)^e mod 2^n}: A323495 (e=-1), this sequence (e=-1/3), A323554 (e=-1/5), A323555 (e=1/5), A323556 (e=1/3). Sequence in context: A256263 A006257 A323555 * A170898 A321901 A321906 Adjacent sequences:  A323550 A323551 A323552 * A323554 A323555 A323556 KEYWORD nonn,tabf AUTHOR Jianing Song, Aug 30 2019 EXTENSIONS Values corrected following a suggestion from Don Reble - R. J. Mathar, Dec 15 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 07:59 EDT 2021. Contains 343030 sequences. (Running on oeis4.)