OFFSET
1,3
COMMENTS
T(n,k) is the unique x in {1, 3, 5, ..., 2^n - 1} such that x^3*(2*k+1) == 1 (mod 2^n).
The n-th row contains 2^(n-1) numbers, and is a permutation of the odd numbers below 2^n.
For all n, k we have v(T(n,k)-1, 2) = v(k, 2) + 1 and v(T(n,k)+1, 2) = v(k+1, 2) + 1, where v(k, 2) = A007814(k) is the 2-adic valuation of k.
T(n,k) is the multiplicative inverse of A323556(n,k) modulo 2^n.
EXAMPLE
Table starts
1;
1, 3;
1, 3, 5, 7;
1, 3, 5, 7, 9,11,13,15;
1,19,21, 7, 9,27,29,15,17, 3, 5,23,25,11,13,31;
1,51,53,39,41,27,29,15,17, 3, 5,55,57,43,45,31,33,19,21, 7,9,59,61,47,49,35,37,23,25,11,13,63;
...
MAPLE
A323553 := proc(n, k)
local x;
for x from 1 to 2^n-1 by 2 do
if modp(x^3*(2*k+1), 2^n) = 1 then
return x;
end if;
end do:
end proc:
seq(seq(A323553(n, k), k=0..2^(n-1)-1), n=1..8) ; # R. J. Mathar, Dec 15 2020
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Jianing Song, Aug 30 2019
EXTENSIONS
Values corrected following a suggestion from Don Reble - R. J. Mathar, Dec 15 2020
STATUS
approved