login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323512
a(n) = A079559(A156552(n)).
3
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1
OFFSET
1
COMMENTS
Characteristic function of numbers n whose unary-binary encoded factorization [A156552(n)] is a term of A005187.
Characteristic function of the range of f(n) = A005940(1+A005187(n)).
FORMULA
a(n) = A079559(A156552(n)).
PROG
(PARI)
A036987(n) = !bitand(n, 1+n);
A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; \\ From A053644
A053645(n) = (n-A053644(n));
A079559(n) = if(!n, 1, (1-A036987(1+n))*A079559(A053645(1+n)));
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
CROSSREFS
Cf. also A323511.
Sequence in context: A286349 A145575 A077605 * A014672 A015335 A014906
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 18 2019
STATUS
approved