login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323403
Sum of sigma and its Dirichlet inverse: a(n) = A000203(n) + A046692(n).
3
2, 0, 0, 9, 0, 24, 0, 15, 16, 36, 0, 20, 0, 48, 48, 31, 0, 30, 0, 30, 64, 72, 0, 60, 36, 84, 40, 40, 0, 0, 0, 63, 96, 108, 96, 97, 0, 120, 112, 90, 0, 0, 0, 60, 60, 144, 0, 124, 64, 78, 144, 70, 0, 120, 144, 120, 160, 180, 0, 216, 0, 192, 80, 127, 168, 0, 0, 90, 192, 0, 0, 195, 0, 228, 104, 100, 192, 0, 0, 186, 121, 252, 0, 288, 216, 264, 240, 180, 0, 288
OFFSET
1,1
FORMULA
a(n) = A000203(n) + A046692(n).
PROG
(PARI)
up_to = 16384;
DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
v046692 = DirInverse(vector(up_to, n, sigma(n)));
A046692(n) = v046692[n];
A323403(n) = (sigma(n)+A046692(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 15 2019
STATUS
approved