login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323236
Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(1) = 0, f(n) = -1 if n is an even number > 2, and f(n) = A323234(n) for odd numbers >= 3.
2
1, 2, 3, 2, 4, 2, 5, 2, 4, 2, 6, 2, 7, 2, 8, 2, 4, 2, 6, 2, 9, 2, 10, 2, 11, 2, 12, 2, 13, 2, 14, 2, 4, 2, 6, 2, 9, 2, 10, 2, 15, 2, 16, 2, 17, 2, 18, 2, 19, 2, 20, 2, 21, 2, 22, 2, 23, 2, 24, 2, 25, 2, 26, 2, 4, 2, 6, 2, 9, 2, 10, 2, 15, 2, 16, 2, 17, 2, 18, 2, 27, 2, 28, 2, 29, 2, 30, 2, 31, 2, 32, 2, 33, 2, 34, 2, 35, 2, 36, 2, 37, 2, 38, 2, 39
OFFSET
1,2
COMMENTS
For all i, j:
A319702(i) = A319702(j) => a(i) = a(j),
A323234(i) = A323234(j) => a(i) = a(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; \\ From A053644
A053645(n) = (n-A053644(n));
A079944off0(n) = (1==binary(2+n)[2]);
A323236aux(n) = if(1==n, 0, if(!(n%2), -1, [A053645(n), A079944off0(n-2)]));
v323236 = rgs_transform(vector(up_to, n, A323236aux(n)));
A323236(n) = v323236[n];
CROSSREFS
Cf. also A323242 (somewhat analogous filter sequence for prime factorization).
Sequence in context: A378568 A305437 A111982 * A319702 A365791 A331252
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 08 2019
STATUS
approved