login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323117
a(n) = T_{n}(n-1) where T_{n}(x) is a Chebyshev polynomial of the first kind.
4
1, 0, 1, 26, 577, 15124, 470449, 17057046, 708158977, 33165873224, 1730726404001, 99612037019890, 6269617090376641, 428438743526336412, 31592397706723526737, 2500433598371461203374, 211434761022028192051201, 19023879409608991280267536
OFFSET
0,4
LINKS
FORMULA
a(n)^2 - ((n - 1)^2 - 1) * A323118(n-1)^2 = 1 for n > 0.
a(n) = A322836(n,n-1) for n > 0.
a(n) ~ exp(-1) * 2^(n-1) * n^n. - Vaclav Kotesovec, Jan 05 2019
a(n) = cos(n*arccos(n-1)). - Seiichi Manyama, Mar 05 2021
a(n) = n * Sum_{k=0..n} (2*n-4)^k * binomial(n+k,2*k)/(n+k) for n > 0. - Seiichi Manyama, Mar 05 2021
MATHEMATICA
Table[ChebyshevT[n, n - 1], {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
PROG
(PARI) a(n) = polchebyshev(n, 1, n-1);
(PARI) a(n) = round(cos(n*acos(n-1))); \\ Seiichi Manyama, Mar 05 2021
(PARI) a(n) = if(n==0, 1, n*sum(k=0, n, (2*n-4)^k*binomial(n+k, 2*k)/(n+k))); \\ Seiichi Manyama, Mar 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 05 2019
STATUS
approved