login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293612
a(n) = (1/2)*(n + 1)*(5*n^2 + 15*n + 6)*Pochhammer(n, 6) / 6!.
2
0, 26, 588, 5376, 30660, 129780, 446292, 1315776, 3444012, 8198190, 18058040, 37285248, 72882264, 135925608, 243374040, 420468480, 703858344, 1145608002, 1818257364, 2821132160, 4288122300, 6397170780, 9381740940, 13544556480, 19273936500, 27063076950, 37532660256
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
From Colin Barker, Jul 28 2019: (Start)
G.f.: 2*x*(13 + 164*x + 333*x^2 + 120*x^3) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>9.
a(n) = ((n*(1+n)^2*(720 + 2724*n + 3336*n^2 + 1919*n^3 + 571*n^4 + 85*n^5 + 5*n^6))) / 1440.
(End)
MAPLE
A293612 := n -> (1/2)*(n + 1)*(5*n^2 + 15*n + 6)*pochhammer(n, 6)/6!;
seq(A293612(n), n=0..29);
MATHEMATICA
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 26, 588, 5376, 30660, 129780, 446292, 1315776, 3444012, 8198190}, 40] (* or *)
a = (720 #1 + 4164 #1^2 + 9504 #1^3 + 11315 #1^4 + 7745 #1^5 + 3146 #1^6 + 746 #1^7 + 95 #1^8 + 5 #1^9)/1440 &; Table[a[n], {n, 0, 40}]
Table[(n + 1)*(5*n^2 + 15*n + 6)*Pochhammer[n, 6]/(2*6!), {n, 0, 50}] (* G. C. Greubel, Oct 22 2017 *)
PROG
(PARI) for(n=0, 50, print1((n + 1)*(5*n^2 + 15*n + 6)*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*n/(2*6!), ", ")) \\ G. C. Greubel, Oct 22 2017
(PARI) concat(0, Vec(2*x*(13 + 164*x + 333*x^2 + 120*x^3) / (1 - x)^10 + O(x^40))) \\ Colin Barker, Jul 28 2019
(Magma) [(n + 1)*(5*n^2 + 15*n + 6)*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*n/(2*Factorial(6)):n in [0..50]]; // G. C. Greubel, Oct 22 2017
CROSSREFS
Sequence in context: A283343 A160059 A323117 * A197123 A203598 A262076
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Oct 13 2017
STATUS
approved