The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323013 Form of Zorach additive triangle T(n,k) (see A035312) where each number is sum of west and northwest numbers, with the additional condition that the first element T(n,1) is a Fibonacci number. 0
 1, 2, 3, 5, 7, 10, 8, 13, 20, 30, 21, 29, 42, 62, 92, 34, 55, 84, 126, 188, 280, 89, 123, 178, 262, 388, 576, 856, 144, 233, 356, 534, 796, 1184, 1760, 2616, 377, 521, 754, 1110, 1644, 2440, 3624, 5384, 8000, 610, 987, 1508, 2262, 3372, 5016, 7456, 11080, 16464, 24464 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjecture: Let F(i) be the i-th Fibonacci number. Each number of T(n, k), k = 1, 2, 3 is the difference between two Fibonacci numbers F(i) - F(j) for some i, j, where F(i) is the smallest Fibonacci number greater than T(n, k). The case T(n, 1) is trivial. Examples: 10 = 13 - 3, 29 = 34 - 5, 20 = 21 - 1, 42 = 55 - 13, 84 = 89 - 5, ... We observe interesting properties: T(n,1) = A117647(n) = 1, 2, 5, 8, 21, ... where n = 1, 2, ... T(2n,2) = A033887(n) = 3, 13, 55, ... (Fibonacci(3n+1), and T(2n+1,2) = A048876(n) = 7, 29, 123, ... (Generalized Pell equation with second term of 7) where n = 1, 2, ... T(3n,3) = 10, 84, 754, 6388,... If n = 2m - 1, T(6m - 3, 3) = F(9m - 2) - F(9m - 5) and if n = 2m, T(6m, 3) =  F(9m + 2) - F(9m - 4). T(3n+1,3) = 20, 178, 1508, 13530, ... If n = 2m - 1, T(6m - 2, 3) = F(9m - 1) - F(9m - 7) and if n = 2m, T(6m+1, 3) =  F(9m + 4) - F(9m + 1). T(3n+2,3) = 42, 356, 3194, 27060, ... If n = 2m - 1, T(6m - 1, 3) = F(9m + 1) - F(9m - 2) and if n = 2m, T(6m + 2, 3) =  F(9m + 5) - F(9m - 1). Other property: T(2m, 1) + T(2m, 2) = T(2m +1, 1) with T(2m, 1)= F(3m), T(2m, 2) = F(3m + 1) and T(2m + 1, 1) = F(3m + 2). T(2m + 1, 1) + T(2m + 1, 2) = F(3m + 4) - F(3m - 1). LINKS EXAMPLE The start of the sequence as a triangular array T(n, k) read by rows:    1;    2,   3;    5,   7,  10;    8,  13,  20,   30;   21,  29,  42,   62,   92;   34,  55,  84,  126,  188,  280;   ... MAPLE with(combinat, fibonacci): lst:={1}:lst2:=lst: for n from 2 to 15 do : lst1:={}:ii:=0:   for j from 1 to 1000 while(ii=0) do:      i:=fibonacci(j):      if {i} intersect lst2 = {} and {i+lst[1]} intersect lst2 = {}       then       lst1:=lst1 union {i}:ii:=1:       else      fi:    od:     for k from 1 to n-1 do:       lst1:=lst1 union {lst1[k]+lst[k]}:     od:     lst:=lst1:lst2:=lst2 union lst:     print(lst1):    od: CROSSREFS Cf. A000045, A002878, A033887, A035312, A036561, A117647. Sequence in context: A214331 A182483 A308818 * A163975 A267521 A202267 Adjacent sequences:  A323010 A323011 A323012 * A323014 A323015 A323016 KEYWORD nonn,tabl AUTHOR Michel Lagneau, Jan 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 23:04 EDT 2020. Contains 336434 sequences. (Running on oeis4.)