login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323012
a(n) = (1/sqrt(n^2+1)) * T_{2*n+1}(sqrt(n^2+1)) where T_{n}(x) is a Chebyshev polynomial of the first kind.
2
1, 5, 305, 53353, 18674305, 10928351501, 9616792908241, 11868363584907985, 19553538801258341377, 41456387654578883552149, 109939727677547706703222001, 356521758767660233608385698361, 1387930545993760882531890016305025
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(2*n+1,2*k)*(n^2+1)^(n-k)*n^(2*k).
a(n) ~ 2^(2*n) * n^(2*n). - Vaclav Kotesovec, Jan 02 2019
MATHEMATICA
Join[{1}, Table[Sum[Binomial[2 n + 1, 2 k] (n^2 + 1)^(n - k) n^(2 k), {k, 0, n}], {n, 20}]] (* Vincenzo Librandi, Jan 03 2019 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(2*n+1, 2*k)*(n^2+1)^(n-k)*n^(2*k))}
(Magma) [&+[Binomial(2*n+1, 2*k)*(n^2+1)^(n-k)*n^(2*k): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Jan 03 2019
CROSSREFS
Diagonal of A188647.
Sequence in context: A158994 A158996 A042763 * A342210 A300425 A300687
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 02 2019
STATUS
approved