login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322933
Digits of the 8-adic integer 7^(1/3).
3
7, 2, 6, 6, 2, 7, 7, 2, 0, 6, 5, 6, 7, 3, 5, 6, 1, 5, 6, 1, 0, 0, 2, 4, 6, 1, 5, 0, 4, 3, 3, 4, 3, 3, 0, 5, 2, 5, 4, 4, 5, 2, 7, 5, 2, 7, 2, 1, 4, 5, 7, 5, 7, 0, 2, 7, 0, 1, 3, 2, 4, 7, 6, 5, 1, 1, 2, 4, 2, 0, 7, 2, 5, 4, 0, 4, 7, 0, 4, 3, 5, 5, 1, 3, 4, 4, 6, 1, 7, 7, 3, 5, 3, 6, 6, 5, 7, 5, 0, 6
OFFSET
0,1
COMMENTS
The octal version of A225405.
LINKS
Wikipedia, Hensel's Lemma.
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 5 * (b(n-1)^3 - 7) mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n. - Seiichi Manyama, Aug 14 2019
EXAMPLE
56027726627^3 == 7 (mod 8^11) in octal.
PROG
(PARI) N=100; Vecrev(digits(lift((7+O(2^(3*N)))^(1/3)), 8), N) \\ Seiichi Manyama, Aug 14 2019
(Ruby)
def A322933(n)
ary = [7]
a = 7
n.times{|i|
b = (a + 5 * (a ** 3 - 7)) % (8 ** (i + 2))
ary << (b - a) / (8 ** (i + 1))
a = b
}
ary
end
p A322933(100) # Seiichi Manyama, Aug 14 2019
CROSSREFS
Cf. A225405 (decimal version), A322931, A322932.
Sequence in context: A019934 A295874 A182548 * A143306 A199075 A228045
KEYWORD
nonn,base,easy
AUTHOR
Patrick A. Thomas, Dec 31 2018
STATUS
approved