login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Digits of the 8-adic integer 7^(1/3).
3

%I #17 Aug 17 2019 03:13:56

%S 7,2,6,6,2,7,7,2,0,6,5,6,7,3,5,6,1,5,6,1,0,0,2,4,6,1,5,0,4,3,3,4,3,3,

%T 0,5,2,5,4,4,5,2,7,5,2,7,2,1,4,5,7,5,7,0,2,7,0,1,3,2,4,7,6,5,1,1,2,4,

%U 2,0,7,2,5,4,0,4,7,0,4,3,5,5,1,3,4,4,6,1,7,7,3,5,3,6,6,5,7,5,0,6

%N Digits of the 8-adic integer 7^(1/3).

%C The octal version of A225405.

%H Seiichi Manyama, <a href="/A322933/b322933.txt">Table of n, a(n) for n = 0..10000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hensel%27s_lemma">Hensel's Lemma</a>.

%F Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 5 * (b(n-1)^3 - 7) mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n. - _Seiichi Manyama_, Aug 14 2019

%e 56027726627^3 == 7 (mod 8^11) in octal.

%o (PARI) N=100; Vecrev(digits(lift((7+O(2^(3*N)))^(1/3)), 8), N) \\ _Seiichi Manyama_, Aug 14 2019

%o (Ruby)

%o def A322933(n)

%o ary = [7]

%o a = 7

%o n.times{|i|

%o b = (a + 5 * (a ** 3 - 7)) % (8 ** (i + 2))

%o ary << (b - a) / (8 ** (i + 1))

%o a = b

%o }

%o ary

%o end

%o p A322933(100) # _Seiichi Manyama_, Aug 14 2019

%Y Cf. A225405 (decimal version), A322931, A322932.

%K nonn,base,easy

%O 0,1

%A _Patrick A. Thomas_, Dec 31 2018