login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322513
Expansion of e.g.f. log(1 + Sum_{k>=1} d(k) * x^k / k!), where d(k) = number of divisors of k (A000005).
1
0, 1, 1, -2, 1, 11, -48, -6, 1241, -6431, -15320, 452970, -2317212, -17584137, 372119776, -1552313624, -31732274313, 565880016193, -1217992446564, -90197542736656, 1400682677566587, 1990004001731140, -384348195167184028, 5109122826021406702
OFFSET
0,4
COMMENTS
Logarithmic transform of A000005.
LINKS
MAPLE
a:= proc(n) option remember; `if`(n=0, 0, (b-> b(n)-add(a(j)
*binomial(n, j)*j*b(n-j), j=1..n-1)/n)(numtheory[tau]))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 06 2019
MATHEMATICA
nmax = 23; CoefficientList[Series[Log[1 + Sum[DivisorSigma[0, k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = DivisorSigma[0, n] - Sum[Binomial[n, k] DivisorSigma[0, n - k] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Oct 03 2019
STATUS
approved