The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274805 The logarithmic transform of sigma(n). 4
1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177 (list; graph; refs; listen; history; text; internal format)



The logarithmic transform [LOG] transforms an input sequence b(n) into the output sequence a(n). The LOG transform is the inverse of the exponential transform [EXP], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell’s formula. For information about the EXP transform see A274804. The logarithmic transform is related to the inverse multinomial transform, see A274844 and the first formula.

The definition of the LOG transform, see the second formula, shows that n >= 1. To preserve the identity EXP[LOG[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the LOG transform, otherwise information about b(0) will be lost in transformation.

In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.

We observe that the logarithmic transform leaves the value of a(0) undefined.

The Maple programs can be used to generate the logarithmic transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A001187 and the first formula. The second program uses the definition of the logarithmic transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the logarithmic transform, see A274804.


Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.

Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.


Alois P. Heinz, Table of n, a(n) for n = 1..451

M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

N. J. A. Sloane, Transforms.

Eric W. Weisstein MathWorld, Logarithmic Transform.


a(n) = b(n) - Sum_{k = 1..n-1}((k*binomial(n, k)*b(n-k)*a(k))/n), n >= 1, with b(n) = A000203(n) = sigma(n).

E.g.f. log(1+ Sum_{n >= 1}(b(n)*x^n/n!)), n >= 1, with b(n) = A000203(n) = sigma(n).


Some a(n) formulas, see A127671:

a(0) = undefined

a(1) = 1*x(1)

a(2) = 1*x(2) - x(1)^2

a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3

a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4

a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5


nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.

nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.

nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.


a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)


(PARI) N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1, N, sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017


Some LOG transform pairs are, n >= 1: A006125(n-1) and A033678(n); A006125(n) and A001187(n); A006125(n+1) and A062740(n); A000045(n) and A112005(n); A000045(n+1) and A007553(n); A000040(n) and A007447(n); A000051(n) and (-1)*A263968(n-1); A002416(n) and A062738(n); A000290(n) and A033464(n-1); A029725(n-1) and A116652(n-1); A052332(n) and A002031(n+1); A027641(n)/A027642(n) and (-1)*A060054(n+1)/(A075180(n-1).

Cf. A274804, A274844, A127671, A000203.

Cf. A112005, A007553, A062740, A007447, A062738, A033464, A116652, A002031, A003704, A003707, A155585, A000142, A226968.

Sequence in context: A124045 A127315 A018359 * A049383 A099411 A018372

Adjacent sequences:  A274802 A274803 A274804 * A274806 A274807 A274808




Johannes W. Meijer, Jul 27 2016



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 07:24 EDT 2020. Contains 337178 sequences. (Running on oeis4.)