login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322505
Factorial expansion of 1/sqrt(2) = Sum_{n>=1} a(n)/n!.
0
0, 1, 1, 0, 4, 5, 0, 6, 4, 9, 0, 11, 7, 3, 11, 10, 2, 2, 5, 16, 11, 3, 7, 18, 16, 19, 11, 12, 21, 19, 22, 5, 31, 21, 25, 30, 20, 6, 5, 21, 17, 41, 36, 14, 28, 13, 45, 16, 0, 33, 1, 2, 41, 1, 28, 43, 9, 15, 16, 28, 22, 19, 22, 13, 34, 61, 38, 40, 56, 44, 69, 25, 42, 44, 34, 73, 71, 42, 17
OFFSET
1,5
EXAMPLE
1/sqrt(2) = 0 + 1/2! + 1/3! + 0/4! + 4/5! + 5/6! + 0/7! + 6/8! + ...
MATHEMATICA
With[{b = 1/Sqrt[2]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 12 2018 *)
PROG
(PARI) default(realprecision, 250); b = 1/sqrt(2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
(Magma) SetDefaultRealField(RealField(250)); [Floor(1/Sqrt(2))] cat [Floor(Factorial(n)/Sqrt(2)) - n*Floor(Factorial((n-1))/Sqrt(2)) : n in [2..80]];
(Sage)
b=1/sqrt(2);
def a(n):
if (n==1): return floor(b)
else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
[a(n) for n in (1..80)]
CROSSREFS
Cf. A010503 (decimal expansion), A130130 (continued fraction).
Cf. A009949 (sqrt(2)).
Sequence in context: A159567 A164357 A092487 * A192041 A132022 A319459
KEYWORD
nonn
AUTHOR
G. C. Greubel, Dec 12 2018
STATUS
approved