The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322505 Factorial expansion of 1/sqrt(2) = Sum_{n>=1} a(n)/n!. 0
 0, 1, 1, 0, 4, 5, 0, 6, 4, 9, 0, 11, 7, 3, 11, 10, 2, 2, 5, 16, 11, 3, 7, 18, 16, 19, 11, 12, 21, 19, 22, 5, 31, 21, 25, 30, 20, 6, 5, 21, 17, 41, 36, 14, 28, 13, 45, 16, 0, 33, 1, 2, 41, 1, 28, 43, 9, 15, 16, 28, 22, 19, 22, 13, 34, 61, 38, 40, 56, 44, 69, 25, 42, 44, 34, 73, 71, 42, 17 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS EXAMPLE 1/sqrt(2) = 0 + 1/2! + 1/3! + 0/4! + 4/5! + 5/6! + 0/7! + 6/8! + ... MATHEMATICA With[{b = 1/Sqrt[2]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 12 2018 *) PROG (PARI) default(realprecision, 250); b = 1/sqrt(2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) (MAGMA) SetDefaultRealField(RealField(250));  [Floor(1/Sqrt(2))] cat [Floor(Factorial(n)/Sqrt(2)) - n*Floor(Factorial((n-1))/Sqrt(2)) : n in [2..80]]; (Sage) b=1/sqrt(2); def a(n):     if (n==1): return floor(b)     else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b)) [a(n) for n in (1..80)] CROSSREFS Cf. A010503 (decimal expansion), A130130 (continued fraction). Cf. A009949 (sqrt(2)). Sequence in context: A159567 A164357 A092487 * A192041 A132022 A319459 Adjacent sequences:  A322502 A322503 A322504 * A322506 A322507 A322508 KEYWORD nonn AUTHOR G. C. Greubel, Dec 12 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 07:24 EDT 2020. Contains 337178 sequences. (Running on oeis4.)