Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 May 24 2022 00:10:37
%S 0,1,1,0,4,5,0,6,4,9,0,11,7,3,11,10,2,2,5,16,11,3,7,18,16,19,11,12,21,
%T 19,22,5,31,21,25,30,20,6,5,21,17,41,36,14,28,13,45,16,0,33,1,2,41,1,
%U 28,43,9,15,16,28,22,19,22,13,34,61,38,40,56,44,69,25,42,44,34,73,71,42,17
%N Factorial expansion of 1/sqrt(2) = Sum_{n>=1} a(n)/n!.
%H <a href="https://oeis.org/index/Fa#facbase">Index entries for factorial base representation</a>
%e 1/sqrt(2) = 0 + 1/2! + 1/3! + 0/4! + 4/5! + 5/6! + 0/7! + 6/8! + ...
%t With[{b = 1/Sqrt[2]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* _G. C. Greubel_, Dec 12 2018 *)
%o (PARI) default(realprecision, 250); b = 1/sqrt(2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
%o (Magma) SetDefaultRealField(RealField(250)); [Floor(1/Sqrt(2))] cat [Floor(Factorial(n)/Sqrt(2)) - n*Floor(Factorial((n-1))/Sqrt(2)) : n in [2..80]];
%o (Sage)
%o b=1/sqrt(2);
%o def a(n):
%o if (n==1): return floor(b)
%o else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
%o [a(n) for n in (1..80)]
%Y Cf. A010503 (decimal expansion), A130130 (continued fraction).
%Y Cf. A009949 (sqrt(2)).
%K nonn
%O 1,5
%A _G. C. Greubel_, Dec 12 2018