login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322504
a(n) = -4*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 1, a(1) = -2, a(2) = 4.
1
1, -2, 4, -9, 22, -57, 153, -419, 1160, -3230, 9021, -25234, 70643, -197849, 554233, -1552742, 4350420, -12189221, 34152882, -95693445, 268125913, -751270435, 2105010556, -5898105006, 16526117921, -46305146110, 129744125671, -363534946433, 1018602262609, -2854060085466, 7996898607604
OFFSET
0,2
COMMENTS
Let {X,Y,Z} be the roots of the cubic equation t^3 + at^2 + bt + c = 0 where {a, b, c} are integers.
Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers.
Then {p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...} is an integer sequence with the recurrence relation: p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
Let k = Pi/7.
This sequence has (a, b, c) = (4, 3, -1), (u, v, w) = (1/(sqrt(7)*tan(8k)), 1/(sqrt(7)*tan(2k)), 1/(sqrt(7)*tan(4k))).
A215404: (a, b, c) = (4, 3, -1), (u, v, w) = (1/(sqrt(7)*tan(2k)), 1/(sqrt(7)*tan(4k)), 1/(sqrt(7)*tan(8k))).
A136776: (a, b, c) = (4, 3, -1), (u, v, w) = (1/(sqrt(7)*tan(4k)), 1/(sqrt(7)*tan(8k)), 1/(sqrt(7)*tan(2k))).
X = (sin(2k)*sin(2k))/(sin(4k)*sin(8k)), Y = (sin(4k)*sin(4k))/(sin(8k)*sin(2k)), Z = (sin(8k)*sin(8k))/(sin(2k)*sin(4k)).
FORMULA
G.f.: (1 + 2*x - x^2) / (1 + 4*x + 3*x^2 - x^3). - Colin Barker, Jan 11 2019
MATHEMATICA
LinearRecurrence[{-4, -3, 1}, {1, -2, 4}, 50] (* Stefano Spezia, Jan 11 2019 *)
RecurrenceTable[{a[0]==1, a[1]==-2, a[2]==4, a[n]==-4 a[n-1]-3 a[n-2]+a[n-3]}, a, {n, 30}] (* Vincenzo Librandi, Jan 13 2019 *)
PROG
(PARI) Vec((1 + 2*x - x^2) / (1 + 4*x + 3*x^2 - x^3) + O(x^30)) \\ Colin Barker, Jan 11 2019
(Magma) I:=[1, -2, 4]; [n le 3 select I[n] else -4*Self(n-1) - 3*Self(n-2) + Self(n-3): n in [1..31]]; // Vincenzo Librandi, Jan 13 2019
CROSSREFS
Sequence in context: A301362 A130018 A352176 * A099754 A105633 A287709
KEYWORD
sign,easy
AUTHOR
Kai Wang, Jan 10 2019
STATUS
approved