login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322484
Semi-unitary highly composite numbers: where the number of semi-unitary divisors of n (A322483) increases to a record.
8
1, 2, 6, 24, 30, 120, 210, 840, 2310, 7560, 9240, 30030, 83160, 120120, 480480, 1081080, 1921920, 2042040, 8168160, 18378360, 32672640, 38798760, 155195040, 349188840, 620780160, 892371480, 3569485920, 8031343320, 14277943680, 25878772920, 103515091680
OFFSET
1,2
COMMENTS
The record numbers of semi-unitary divisors are 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 128, 144, 160, 192, 256, 288, 320, 384, 512, 576, 640, 768, 1024, 1152, 1280, 1536, 2048, ... (see the link for more values).
MATHEMATICA
f[p_, e_] := Floor[(e+3)/2]; sud[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; seq={}; sm=0; Do[s = sud[k]; If[s > sm, AppendTo[seq, k]; sm = s], {k, 1, 100000}]; seq
PROG
(PARI) nbu(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = (f[k, 2]+3)\2; f[k, 2] = 1; ); factorback(f); } \\ A322483
lista(nn) = {my(m = 0, nb); for (n=1, nn, nb = nbu(n); if (nb > m, m = nb; print1(n, ", ")); ); } \\ Michel Marcus, Dec 14 2018
CROSSREFS
Analogous sequences: A002182 (regular divisors), A002110 (unitary divisors), A293185 (bi-unitary).
Cf. A322483.
Sequence in context: A359450 A190424 A377711 * A377710 A066332 A069141
KEYWORD
nonn
AUTHOR
Amiram Eldar, Dec 11 2018
STATUS
approved