OFFSET
1,5
COMMENTS
This relation was defined by Cohen in 1960.
The common notation for T(n,k) is (n,k)*.
If T(n,k) = 1 then n is said to be semi-prime to k.
In general T(n,k) != T(k,n).
The relation is used to define semi-unitary divisors (A322483).
REFERENCES
J. Sandor and B. Crstici, Handbook of Number Theory, II, Springer Verlag, 2004, chapter 3.6, pp. 281.
LINKS
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, Vol. 74, No. 1 (1960), pp. 66-80.
M. V. Subbarao On some arithmetic convolutions, The theory of arithmetic functions, Springer, Berlin, Heidelberg, 1972, pp. 247-271.
D. Suryanarayana and V. Siva Rama Prasad, Sum functions of k-ary and semi-k-ary divisors, Journal of the Australian Mathematical Society, Vol. 15, No. 2 (1973), pp. 148-162.
FORMULA
T(1,n) = T(n,1) = 1.
T(n,n) = n.
EXAMPLE
The table starts
1 1 1 1 1 1 1 1 1 1 ...
1 2 1 1 1 2 1 1 1 2 ...
1 1 3 1 1 3 1 1 1 1 ...
1 2 1 4 1 2 1 1 1 2 ...
1 1 1 1 5 1 1 1 1 5 ...
1 2 3 1 1 6 1 1 1 2 ...
1 1 1 1 1 1 7 1 1 1 ...
1 2 1 4 1 2 1 8 1 2 ...
1 1 3 1 1 3 1 1 9 1 ...
1 2 1 1 5 2 1 1 1 10 ...
...
The triangle formed by the antidiagonals starts
1
1 1
1 2 1
1 1 1 1
1 1 3 2 1
1 1 1 1 1 1
1 2 1 4 1 2 1
1 1 3 1 1 3 1 1
1 1 1 2 5 1 1 2 1
...
MATHEMATICA
udiv[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; semiuGCD[a_, b_] := Max[ Intersection[Divisors[a], udiv[b]]]; Table[semiuGCD[n, k], {n, 1, 20}, {k, n-1, 1, -1 }] // Flatten
PROG
(PARI) udivisors(n) = {my(d=divisors(n)); select(x->(gcd(x, n/x)==1), d); }
T(n, k) = {my(dn = divisors(n), udk = udivisors(k)); vecmax(setintersect(dn, udk)); } \\ Michel Marcus, Dec 14 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Amiram Eldar, Dec 11 2018
STATUS
approved