login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Semi-unitary highly composite numbers: where the number of semi-unitary divisors of n (A322483) increases to a record.
8

%I #8 Dec 18 2018 11:29:17

%S 1,2,6,24,30,120,210,840,2310,7560,9240,30030,83160,120120,480480,

%T 1081080,1921920,2042040,8168160,18378360,32672640,38798760,155195040,

%U 349188840,620780160,892371480,3569485920,8031343320,14277943680,25878772920,103515091680

%N Semi-unitary highly composite numbers: where the number of semi-unitary divisors of n (A322483) increases to a record.

%C The record numbers of semi-unitary divisors are 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 128, 144, 160, 192, 256, 288, 320, 384, 512, 576, 640, 768, 1024, 1152, 1280, 1536, 2048, ... (see the link for more values).

%H Amiram Eldar, <a href="/A322484/a322484.txt">Table of n, a(n), A322483(a(n)) for n = 1..63</a>

%t f[p_, e_] := Floor[(e+3)/2]; sud[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; seq={}; sm=0; Do[s = sud[k]; If[s > sm, AppendTo[seq, k]; sm = s], {k, 1, 100000}]; seq

%o (PARI) nbu(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = (f[k,2]+3)\2; f[k,2] = 1;); factorback(f);} \\ A322483

%o lista(nn) = {my(m = 0, nb); for (n=1, nn, nb = nbu(n); if (nb > m, m = nb; print1(n, ", ")););} \\ _Michel Marcus_, Dec 14 2018

%Y Analogous sequences: A002182 (regular divisors), A002110 (unitary divisors), A293185 (bi-unitary).

%Y Cf. A322483.

%K nonn

%O 1,2

%A _Amiram Eldar_, Dec 11 2018