login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322185 a(n) = sigma(2*n) * binomial(2*n,n)/2, for n >= 1. 2
3, 21, 120, 525, 2268, 12936, 41184, 199485, 948090, 3879876, 12697776, 81124680, 218412600, 1123264800, 5584230720, 18934032285, 63007367940, 412918656150, 1060357914000, 6203093796900, 25836377973120, 88372156476240, 296403506193600, 1999351428352200, 5878093199355468, 24300008114457096, 116816365538886720, 458921436045626400, 1353026992479346800 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Related logarithmic series:
(1) log( Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 ) = Sum_{n>=1} sigma(2*n) * x^n/n (see formula of Joerg Arndt in A182818).
(2) log( C(x) ) = Sum_{n>=1} binomial(2*n,n)/2 * x^n/n, where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
LINKS
FORMULA
a(n) is the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x + y)^n) ), for n >= 1.
EXAMPLE
L.g.f: L(x) = 3*x + 21*x^2/2 + 120*x^3/3 + 525*x^4/4 + 2268*x^5/5 + 12936*x^6/6 + 41184*x^7/7 + 199485*x^8/8 + 948090*x^9/9 + 3879876*x^10/10 + 12697776*x^11/11 + ... + sigma(2*n) * binomial(2*n,n)/2 * x^n/n + ...
RELATED SERIES.
exp(L(x)) = 1 + 3*x + 15*x^2 + 76*x^3 + 357*x^4 + 1662*x^5 + 8203*x^6 + 36609*x^7 + 169800*x^8 + 788024*x^9 + 3586350*x^10 + 15948147*x^11 + ... + A322186(n)*x^n + ...
The table of coefficients of x^n*y^k/(n+k) in
log( Product_{n>=1} 1/(1 - (x + y)^n) ) = (1*x + 1*y)/1 + (3*x^2 + 6*x*y + 3*y^2)/2 + (4*x^3 + 12*x^2*y + 12*x*y^2 + 4*y^3)/3 + (7*x^4 + 28*x^3*y + 42*x^2*y^2 + 28*x*y^3 + 7*y^4)/4 + (6*x^5 + 30*x^4*y + 60*x^3*y^2 + 60*x^2*y^3 + 30*x*y^4 + 6*y^5)/5 + (12*x^6 + 72*x^5*y + 180*x^4*y^2 + 240*x^3*y^3 + 180*x^2*y^4 + 72*x*y^5 + 12*y^6)/6 + (8*x^7 + 56*x^6*y + 168*x^5*y^2 + 280*x^4*y^3 + 280*x^3*y^4 + 168*x^2*y^5 + 56*x*y^6 + 8*y^7)/7 + (15*x^8 + 120*x^7*y + 420*x^6*y^2 + 840*x^5*y^3 + 1050*x^4*y^4 + 840*x^3*y^5 + 420*x^2*y^6 + 120*x*y^7 + 15*y^8)/8 + ...
begins
n=0: [0, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, ..., sigma(k), ...];
n=1: [1, 6, 12, 28, 30, 72, 56, 120, 117, 180, ...];
n=2: [3, 12, 42, 60, 180, 168, 420, 468, 810, 660, ...];
n=3: [4, 28, 60, 240, 280, 840, 1092, 2160, 1980, 6160, ...];
n=4: [7, 30, 180, 280, 1050, 1638, 3780, 3960, 13860, 10010, ...];
n=5: [6, 72, 168, 840, 1638, 4536, 5544, 22176, 18018, 48048, ...];
n=6: [12, 56, 420, 1092, 3780, 5544, 25872, 24024, 72072, 120120, ...];
n=7: [8, 120, 468, 2160, 3960, 22176, 24024, 82368, 154440, 354640, ...];
n=8: [15, 117, 810, 1980, 13860, 18018, 72072, 154440, 398970, 437580, ...];
n=9: [13, 180, 660, 6160, 10010, 48048, 120120, 354640, 437580, 1896180, ...];
n=10: [18, 132, 1848, 4004, 24024, 72072, 248248, 350064, 1706562, 1847560, ...]; ...
in which the diagonal of coefficients of x^n*y^n/(2*n) equals
[0, 6, 42, 240, 1050, 4536, 25872, 82368, 398970, 1896180, ..., 2*a(n), ...],
which is twice this sequence.
PROG
(PARI) {a(n) = sigma(2*n) * binomial(2*n, n)/2}
for(n=1, 30, print1( a(n), ", ") )
(PARI) /* [x^n*y^n/n] log( Product_{n>=1} 1/(1 - (x + y)^n) ) */
N=30
{L = sum(n=1, 2*N+1, -log(1 - (x + y)^n +x*O(x^(2*N)) +y*O(y^(2*N))) ); }
{a(n) = polcoeff( n*polcoeff( L, n, x), n, y)}
for(n=1, N, print1( a(n), ", ") )
CROSSREFS
Sequence in context: A117512 A068127 A247247 * A171137 A144884 A004658
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 15:23 EST 2023. Contains 367713 sequences. (Running on oeis4.)