login
A068127
Triangular numbers with sum of digits = 3.
8
3, 21, 120, 210, 300, 10011, 20100, 2001000, 200010000, 20000100000, 2000001000000, 200000010000000, 20000000100000000, 2000000001000000000, 200000000010000000000, 20000000000100000000000, 2000000000001000000000000, 200000000000010000000000000, 20000000000000100000000000000
OFFSET
1,1
COMMENTS
The sequence is unbounded, as the (2*10^k)-th triangular number is a term.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..504
MATHEMATICA
t = {}; Do[tri = n*(n+1)/2; If[Total[IntegerDigits[tri, 10]] == 3, AppendTo[t, tri]], {n, 1000000}]; t (* T. D. Noe, Jun 05 2012 *)
Select[Accumulate[Range[2*10^6]], Total[IntegerDigits[#]]==3&] (* Harvey P. Dale, Jun 22 2021 *)
Sort @ Select[Plus @@@ (10^Select[Tuples[Range[0, 29], 3], Min[Differences[#]] >= 0 &]), IntegerQ[Sqrt[8*# + 1]] &] (* Amiram Eldar, May 19 2022 *)
PROG
(Python)
from math import isqrt
from itertools import count, islice
def istri(n): return (lambda x: x == isqrt(x)**2)(8*n+1)
def agen(): yield from filter(istri, (10**i + 10**j + 10**k for i in count(0) for j in range(i+1) for k in range(j+1)))
print(list(islice(agen(), 20))) # Michael S. Branicky, May 14 2022
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Feb 21 2002
EXTENSIONS
More terms from Sascha Kurz, Mar 06 2002
One additional term (a(12)) from Harvey P. Dale, May 14 2022
More terms and offset changed to 1 from Michael S. Branicky, May 14 2022
STATUS
approved