|
|
A247247
|
|
Triangular numbers that are the sum of 2 consecutive terms of A130518.
|
|
1
|
|
|
0, 1, 3, 21, 120, 300, 2080, 11781, 29403, 203841, 1154440, 2881200, 19974360, 113123361, 282328203, 1957283461, 11084934960, 27665282700, 191793804840, 1086210502741, 2710915376403, 18793835590881, 106437544333680, 265642041604800, 1841604094101520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
What will be the distribution of these triangular numbers?
Will they mostly be multiples of three?
a(n) is some nonnegative x in the integer solutions (x, y) of
(1) (6*x + 3)^2 - 6*(6*y + 4)^2 = -15,
(2) (6*x + 3)^2 - 6*(6*y + 8)^2 = -15 or
(3) (2*x + 1)^2 - 6*(2*y + 2)^2 = 1.
(End)
|
|
LINKS
|
|
|
FORMULA
|
Empirical G.f.: x^2*(x+1)*(x^4+2*x^3+19*x^2+2*x+1)/((1-x)*(x^2+x+1)*(x^6-98*x^3+1)). - Robert Israel, Nov 30 2014
|
|
EXAMPLE
|
|
|
MAPLE
|
f:= proc(n)
local x;
x:= ceil((n^2+2*n)/3);
if issqr(1+8*x) then x else NULL fi
end proc:
|
|
MATHEMATICA
|
a247247[n_Integer] := Module[{a130518, a000217, s},
a130518[m_] := Table[i, {i, 0, m}, {3}] // Flatten // Accumulate;
a000217[m_] := Accumulate[Range[m]];
s[m_] :=
a130518[m] + Most@PrependTo[a130518[m], 0] // DeleteDuplicates;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|