login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322103
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} sigma_k(d).
3
1, 1, 3, 1, 4, 3, 1, 6, 5, 6, 1, 10, 11, 11, 3, 1, 18, 29, 27, 7, 9, 1, 34, 83, 83, 27, 20, 3, 1, 66, 245, 291, 127, 66, 9, 10, 1, 130, 731, 1091, 627, 290, 51, 26, 6, 1, 258, 2189, 4227, 3127, 1494, 345, 112, 18, 9, 1, 514, 6563, 16643, 15627, 8330, 2403, 668, 102, 28, 3
OFFSET
1,3
LINKS
FORMULA
G.f. of column k: Sum_{j>=1} sigma_k(j)*x^j/(1 - x^j).
A(n,k) = Sum_{d|n} d^k*tau(n/d).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 4, 6, 10, 18, 34, ...
3, 5, 11, 29, 83, 245, ...
6, 11, 27, 83, 291, 1091, ...
3, 7, 27, 127, 627, 3127, ...
9, 20, 66, 290, 1494, 8330, ...
MATHEMATICA
Table[Function[k, Sum[DivisorSigma[k, d], {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[DivisorSigma[k, j] x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
PROG
(PARI) T(n, k)={sumdiv(n, d, d^k*numdiv(n/d))}
for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018
CROSSREFS
Columns k=0..3 give A007425, A007429, A007433, A321140.
Cf. A109974, A321141 (diagonal), A356045.
Sequence in context: A104568 A030758 A347065 * A272172 A104764 A152842
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Nov 26 2018
STATUS
approved