OFFSET
1,3
LINKS
Seiichi Manyama, Antidiagonals n = 1..140, flattened
FORMULA
G.f. of column k: (1/(1-x)) * Sum_{j>=1} sigma_k(j) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k * tau(j/d).
T(n,k) = Sum_{j=1..n} Sum_{d|j} sigma_k(d).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
4, 5, 7, 11, 19, 35, ...
7, 10, 18, 40, 102, 280, ...
13, 21, 45, 123, 393, 1371, ...
16, 28, 72, 250, 1020, 4498, ...
25, 48, 138, 540, 2514, 12828, ...
PROG
(PARI) T(n, k) = sum(j=1, n, sigma(j, k)*(n\j));
(PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, d^k*numdiv(j/d)));
(PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, sigma(d, k)));
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 24 2022
STATUS
approved