login
A322040
Expansion of (1 + x)^2 / ((1 - x)^2*(1 + 2*x + 2*x^2)^2).
2
1, 0, 0, 4, -4, 4, 8, -20, 32, -12, -40, 124, -160, 68, 232, -628, 816, -300, -1160, 3100, -3904, 1380, 5640, -14676, 18256, -6156, -26472, 67900, -83488, 27268, 121640, -308276, 375920, -119532, -549448, 1379932, -1671424, 520100, 2449480
OFFSET
0,4
COMMENTS
Connected with tiling of torus by squares (see A322038).
FORMULA
a(n) = -2*a(n-1) - a(n-2) + 4*a(n-3) + 4*a(n-4) - 4*a(n-6) for n>5. - Colin Barker, Dec 04 2018
MATHEMATICA
LinearRecurrence[{-2, -1, 4, 4, 0, -4}, {1, 0, 0, 4, -4, 4}, 100] (* Amiram Eldar, Dec 04 2018 *)
CoefficientList[Series[(1+x)^2/((1-x)^2(1+2x+2x^2)^2), {x, 0, 40}], x] (* Harvey P. Dale, Jan 20 2021 *)
PROG
(PARI) Vec((1 + x)^2 / ((1 - x)^2*(1 + 2*x + 2*x^2)^2) + O(x^40)) \\ Colin Barker, Dec 04 2018
CROSSREFS
Sequence in context: A167184 A276113 A232406 * A085071 A341324 A011412
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Dec 03 2018
STATUS
approved