login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322042 Maximum edge-distance of a point in the quotient graph E/nE from the origin (see A322041 for further information). 2
0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..100

FORMULA

Conjectures from Colin Barker, Dec 06 2018: (Start)

G.f. = x(1+x)/(1-x-x^3+x^4) [Simplified by N. J. A. Sloane, Dec 06 2018]

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.

(End)

Conjecture: a(n) = n - ceiling(n/3) = A004523(n).

MAPLE

hist2:=proc(n) local A, i, j, m, d1, d2, d3, d4;

A:=Array(0..n, 0);

for i from 0 to n-1 do

for j from 0 to n-1 do

d1:=i+j;

d2:=n-i;

d3:=2*n-i-j;

d4:=n-j;

if i+j<n then

   m:=min(d1, d2, d3, d4);

elif i+j=n then m:=min(i, j);

else

   m:=min(d1, i, j, d3);

fi;

   A[m]:=A[m]+1;

od: od:

R:=0;

for i from 0 to n-1 do if A[i] <> 0 then R:=i; fi; od:

R;

end;

RR:=[];

for n from 1 to 100 do RR:=[op(RR), hist2(n)]; od: RR;

CROSSREFS

Cf. A322041.

Sequence in context: A156301 A195124 A032509 * A004523 A038372 A121930

Adjacent sequences:  A322039 A322040 A322041 * A322043 A322044 A322045

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 06 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 31 03:23 EDT 2021. Contains 346367 sequences. (Running on oeis4.)