login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 + x)^2 / ((1 - x)^2*(1 + 2*x + 2*x^2)^2).
2

%I #13 Jan 20 2021 12:33:09

%S 1,0,0,4,-4,4,8,-20,32,-12,-40,124,-160,68,232,-628,816,-300,-1160,

%T 3100,-3904,1380,5640,-14676,18256,-6156,-26472,67900,-83488,27268,

%U 121640,-308276,375920,-119532,-549448,1379932,-1671424,520100,2449480

%N Expansion of (1 + x)^2 / ((1 - x)^2*(1 + 2*x + 2*x^2)^2).

%C Connected with tiling of torus by squares (see A322038).

%H Colin Barker, <a href="/A322040/b322040.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (-2,-1,4,4,0,-4).

%F a(n) = -2*a(n-1) - a(n-2) + 4*a(n-3) + 4*a(n-4) - 4*a(n-6) for n>5. - _Colin Barker_, Dec 04 2018

%t LinearRecurrence[{-2, -1, 4, 4, 0, -4}, {1, 0, 0, 4, -4, 4}, 100] (* _Amiram Eldar_, Dec 04 2018 *)

%t CoefficientList[Series[(1+x)^2/((1-x)^2(1+2x+2x^2)^2),{x,0,40}],x] (* _Harvey P. Dale_, Jan 20 2021 *)

%o (PARI) Vec((1 + x)^2 / ((1 - x)^2*(1 + 2*x + 2*x^2)^2) + O(x^40)) \\ _Colin Barker_, Dec 04 2018

%Y Cf. A322038, A322039.

%K sign,easy

%O 0,4

%A _N. J. A. Sloane_, Dec 03 2018