login
A322007
a(n) = number of primes of the form p = 2n - q, where q is a prime or semiprime.
2
0, 0, 1, 2, 3, 3, 4, 4, 6, 5, 6, 7, 8, 8, 9, 7, 8, 9, 11, 9, 11, 11, 11, 12, 13, 12, 13, 14, 13, 13, 16, 15, 16, 16, 14, 16, 18, 16, 19, 19, 17, 18, 21, 17, 19, 22, 19, 19, 24, 19, 21, 23, 20, 21, 26, 22, 23, 28, 23, 24, 29, 23, 24, 29, 21, 25, 29, 24, 25, 29, 27, 25, 33, 26, 27, 32, 27
OFFSET
0,4
COMMENTS
Related to Chen's theorem (Chen 1966, 1973) which states that every sufficiently large even number is the sum of a prime and another prime or semiprime. Yamada (2015) has proved that this holds for all even numbers larger than exp(exp(36)).
In terms of this sequence, Chen's theorem with Yamada's bound is equivalent to say that a(n) > 0 for all n > 1.7 * 10^1872344071119348 (exponent ~ 1.8*10^15).
A235645 lists the number of decompositions of 2n into a prime p and a prime or semiprime q; this is less than a(n) because p + q and q + p is the same decomposition (if q is a prime), but this sequence will count two distinct primes 2n - q and 2n - p (if q <> p).
Sequence A322006 lists the same for even and odd numbers n, not only for even numbers 2n.
REFERENCES
Chen, J. R. (1966). "On the representation of a large even integer as the sum of a prime and the product of at most two primes". Kexue Tongbao. 11 (9): 385-386.
Chen, J. R. (1973). "On the representation of a larger even integer as the sum of a prime and the product of at most two primes". Sci. Sinica. 16: 157-176.
LINKS
Y. C. Cai, Chen's Theorem with Small Primes. Acta Mathematica Sinica 18, no. 3 (2002), pp. 597-604. doi:10.1007/s101140200168.
P. M. Ross, On Chen's theorem that each large even number has the form (p1+p2) or (p1+p2p3), J. London Math. Soc. Series 2 vol. 10, no. 4 (1975), pp. 500-506. doi:10.1112/jlms/s2-10.4.500.
Tomohiro Yamada, Explicit Chen's theorem, preprint arXiv:1511.03409 [math.NT] (2015).
FORMULA
a(n) = A322006(2n).
EXAMPLE
a(4) = 2 since for n = 4, 2n = 8 = 2 + 6 = 3 + 5 = 5 + 3, i.e., primes 2, 3 and 5 are of the form specified in the definition (since 6 = 2*3 is a semiprime and 5 and 3 are primes).
PROG
(PARI) A322007(n, s=0)={forprime(p=2, -2+n*=2, bigomega(n-p)<3&&s++); s}
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jan 06 2019
STATUS
approved