login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321999
Sum of digits of n minus the number of digits of n.
1
0, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7
OFFSET
0,4
COMMENTS
Concerning 0 we use the convention that 0 has 0 digits, so a(0) = 0 - 0 = 0, a(1) = 1 - 1 = 0, and a(10) = 1 - 2 = -1 is the first negative terms of the sequence.
LINKS
FORMULA
a(n) = A007953(n) - A004218(n+1) = A007953(n) - A055642(n) for all n > 0. a(m*10^k) = a(m) - k for all m > 0, k >= 0, in particular:
a(10^k) = -k for all k >= 0. a(m) = m - 1 for 0 < m < 10.
a(n+1) = a(n) + 1 unless n = 9 (mod 10), in which case a(n+1) = a((n+1)/10).
a(10^k-1) = 8*k.
EXAMPLE
a(0) = 0 - 0 = 0. (We consider 0 has 0 digits.)
a(1) = 1 - 1 = 0;
a(2) = 2 - 1 = 1, ...,
a(9) = 9 - 1 = 8. (General formula: a(10^k - 1) = 8*k.)
a(10) = 1 - 2 = -1. (General formula: a(10^k) = -k.)
a(11) = 1+1 - 2 = 0, ...,
a(19) = 1+9 - 2 = 8;
a(20) = 2+0 - 2 = 0. (General formula: a(m*10^k) = a(m) - k.)
a(29) = 2+9 - 2 = 9, ...,
a(99) = 9+9 - 2 = 16: cf. a(9);
a(100) = 1+0+0 - 3 = -2;
a(101) = 1+0+1 - 3 = -1;
a(102) = 1+0+2 - 3 = 0, ...,
a(109) = 1+0+9 - 3 = 7;
a(110) = 1+1+0 - 3 = -1, ...,
a(119) = 1+1+9 - 3 = 8, ...,
a(199) = 1+9+9 - 3 = 16,
a(200) = 2+0+0 - 3 = -1: cf. a(20), ...,
a(999) = 9+9+9 - 3 = 24: cf. a(9);
a(1000) = 1+0+0+0 - 4 = -3, ...,
a(1001) = 1+0+0+1 - 4 = -2, ....
MAPLE
a:= n-> add(i, i=convert(n, base, 10))-length(n):
seq(a(n), n=0..100); # Alois P. Heinz, Dec 10 2018
MATHEMATICA
Table[(Plus@@IntegerDigits[n]) - Length[IntegerDigits[n]] + KroneckerDelta[n, 0], {n, 0, 99}] (* Alonso del Arte, Dec 07 2018 *)
Table[Total[IntegerDigits[n]]-IntegerLength[n], {n, 0, 100}] (* Harvey P. Dale, Dec 27 2022 *)
PROG
(PARI) A321999(n)=sumdigits(n)-if(n, logint(n, 10)+1)
CROSSREFS
Cf. A007953 (digit sum of n), A004218 (ceiling(log_10(n))), A055642 (number of digits of n).
The zeroes of this sequence, except 0 itself, are in A061384.
Sequence in context: A256289 A031076 A346732 * A228822 A255829 A277547
KEYWORD
base,sign
AUTHOR
M. F. Hasler, Dec 07 2018
STATUS
approved