OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Simon Crevals, Patric R. J. Östergård, Independent domination of grids, Discrete Math., 338 (2015), 1379-1384.
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).
FORMULA
For n >= 14, a(n) = floor((n+2)^2 / 5 - 4).
a(n) = A104519(n+2), the domination number of the n X n grid graph, for all n except for n = 9, 11.
From Colin Barker, Jan 14 2019: (Start)
G.f.: x*(1 + 2*x^4 - x^5 - x^6 + 2*x^7 + x^8 - 4*x^9 + 3*x^10 - 2*x^12 + x^13 + x^14 - 2*x^15 + 2*x^16 - 2*x^18 + x^19) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n > 20.
(End)
MAPLE
ogf := (-41*x^6 + 47*x^5 - x^3 - x^2 + 41*x - 47)/((x - 1)^3*(x^4 + x^3 + x^2 + x + 1)): ser := series(ogf, x, 44):
(0, 1, 2, 3, 4, 7, 10, 12, 16, 21, 24, 30, 35, 40), seq(coeff(ser, x, n), n=0..42); # Peter Luschny, Jan 14 2019
PROG
(PARI) concat(0, Vec(x*(1 + 2*x^4 - x^5 - x^6 + 2*x^7 + x^8 - 4*x^9 + 3*x^10 - 2*x^12 + x^13 + x^14 - 2*x^15 + 2*x^16 - 2*x^18 + x^19) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ Colin Barker, Jan 14 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Andrey Zabolotskiy, Jan 14 2019
STATUS
approved