login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321394
a(n) = (1/24)*n!*[x^n] (9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x)) where sectan(x) = sec(x) + tan(x).
3
1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, 87700736, 2220246387, 62010892800, 1892138207375, 62591994720256, 2230631475837767, 85188256574494720, 3470563987113896475, 150234341045137637376, 6886077311552162511547, 333165973379285030666240, 16967906593223743786978375
OFFSET
0,3
COMMENTS
See A320956 for motivation and definitions.
MAPLE
sectan := x -> sec(x) + tan(x): # sin(Pi/4 + x/2)*csc(Pi/4 - x/2)
egf := 9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x):
ser := series(egf, x, 22): seq((1/24)*n!*coeff(ser, x, n), n=0..20);
MATHEMATICA
m = 20;
sectan[x_] := Sec[x] + Tan[x];
egf = 9 + sectan[4x] + 6 sectan[2x] + 8 sectan[x];
(1/24) CoefficientList[egf + O[x]^(m+1), x] Range[0, m]! (* Jean-François Alcover, Aug 19 2021 *)
PROG
(PARI) sectan(x) = 1/cos(x) + tan(x);
my(x='x+O('x^25)); Vec(serlaplace(9 + sectan(4*x) + 6*sectan(2*x) + 8*sectan(x)))/24 \\ Michel Marcus, Aug 19 2021
CROSSREFS
Cf. A000111 (n=1), A000828 (n=2), A320957 (n=3), this sequence (n=4), A320956.
Sequence in context: A292631 A295098 A124426 * A320956 A355349 A324061
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 08 2018
STATUS
approved